3.5.77 \(\int \frac {(c+d x^3)^{3/2}}{(a+b x^3)^2} \, dx\) [477]

3.5.77.1 Optimal result
3.5.77.2 Mathematica [B] (warning: unable to verify)
3.5.77.3 Rubi [A] (verified)
3.5.77.4 Maple [C] (warning: unable to verify)
3.5.77.5 Fricas [F(-1)]
3.5.77.6 Sympy [F]
3.5.77.7 Maxima [F]
3.5.77.8 Giac [F]
3.5.77.9 Mupad [F(-1)]

3.5.77.1 Optimal result

Integrand size = 21, antiderivative size = 60 \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {c x \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {1}{3},2,-\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 \sqrt {1+\frac {d x^3}{c}}} \]

output
c*x*AppellF1(1/3,2,-3/2,4/3,-b*x^3/a,-d*x^3/c)*(d*x^3+c)^(1/2)/a^2/(1+d*x^ 
3/c)^(1/2)
 
3.5.77.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(339\) vs. \(2(60)=120\).

Time = 10.32 (sec) , antiderivative size = 339, normalized size of antiderivative = 5.65 \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\frac {x \left (d (b c+5 a d) x^3 \sqrt {1+\frac {d x^3}{c}} \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+\frac {a \left (-64 a c \left (-a d^2 x^3+b c \left (3 c+d x^3\right )\right ) \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+24 (b c-a d) x^3 \left (c+d x^3\right ) \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}{\left (a+b x^3\right ) \left (-8 a c \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+3 x^3 \left (2 b c \operatorname {AppellF1}\left (\frac {4}{3},\frac {1}{2},2,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )+a d \operatorname {AppellF1}\left (\frac {4}{3},\frac {3}{2},1,\frac {7}{3},-\frac {d x^3}{c},-\frac {b x^3}{a}\right )\right )\right )}\right )}{24 a^2 b \sqrt {c+d x^3}} \]

input
Integrate[(c + d*x^3)^(3/2)/(a + b*x^3)^2,x]
 
output
(x*(d*(b*c + 5*a*d)*x^3*Sqrt[1 + (d*x^3)/c]*AppellF1[4/3, 1/2, 1, 7/3, -(( 
d*x^3)/c), -((b*x^3)/a)] + (a*(-64*a*c*(-(a*d^2*x^3) + b*c*(3*c + d*x^3))* 
AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 24*(b*c - a*d)*x^ 
3*(c + d*x^3)*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a) 
] + a*d*AppellF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))/((a + b* 
x^3)*(-8*a*c*AppellF1[1/3, 1/2, 1, 4/3, -((d*x^3)/c), -((b*x^3)/a)] + 3*x^ 
3*(2*b*c*AppellF1[4/3, 1/2, 2, 7/3, -((d*x^3)/c), -((b*x^3)/a)] + a*d*Appe 
llF1[4/3, 3/2, 1, 7/3, -((d*x^3)/c), -((b*x^3)/a)])))))/(24*a^2*b*Sqrt[c + 
 d*x^3])
 
3.5.77.3 Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {937, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx\)

\(\Big \downarrow \) 937

\(\displaystyle \frac {c \sqrt {c+d x^3} \int \frac {\left (\frac {d x^3}{c}+1\right )^{3/2}}{\left (b x^3+a\right )^2}dx}{\sqrt {\frac {d x^3}{c}+1}}\)

\(\Big \downarrow \) 936

\(\displaystyle \frac {c x \sqrt {c+d x^3} \operatorname {AppellF1}\left (\frac {1}{3},2,-\frac {3}{2},\frac {4}{3},-\frac {b x^3}{a},-\frac {d x^3}{c}\right )}{a^2 \sqrt {\frac {d x^3}{c}+1}}\)

input
Int[(c + d*x^3)^(3/2)/(a + b*x^3)^2,x]
 
output
(c*x*Sqrt[c + d*x^3]*AppellF1[1/3, 2, -3/2, 4/3, -((b*x^3)/a), -((d*x^3)/c 
)])/(a^2*Sqrt[1 + (d*x^3)/c])
 

3.5.77.3.1 Defintions of rubi rules used

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 937
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) 
  Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, p, q 
}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])
 
3.5.77.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 6.

Time = 4.57 (sec) , antiderivative size = 801, normalized size of antiderivative = 13.35

method result size
default \(\text {Expression too large to display}\) \(801\)
elliptic \(\text {Expression too large to display}\) \(801\)

input
int((d*x^3+c)^(3/2)/(b*x^3+a)^2,x,method=_RETURNVERBOSE)
 
output
-1/3*(a*d-b*c)/b/a*x*(d*x^3+c)^(1/2)/(b*x^3+a)-2/3*I*(d^2/b^2-1/6/b^2*d*(a 
*d-b*c)/a)*3^(1/2)/d*(-c*d^2)^(1/3)*(I*(x+1/2/d*(-c*d^2)^(1/3)-1/2*I*3^(1/ 
2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2)*((x-1/d*(-c*d^2)^(1/3 
))/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2)*(-I*(x+1/ 
2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3 
))^(1/2)/(d*x^3+c)^(1/2)*EllipticF(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^2)^(1/3)- 
1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),(I*3^(1/2) 
/d*(-c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^ 
(1/2))+1/18*I/a/b^2/d^2*2^(1/2)*sum((5*a^2*d^2-a*b*c*d-4*b^2*c^2)/_alpha^2 
/(a*d-b*c)*(-c*d^2)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-c*d^2)^(1/3)+(-c 
*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)*(d*(x-1/d*(-c*d^2)^(1/3))/(-3*(-c*d^2) 
^(1/3)+I*3^(1/2)*(-c*d^2)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-c* 
d^2)^(1/3)+(-c*d^2)^(1/3)))/(-c*d^2)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-c*d 
^2)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-c*d^2)^(2/3)+2*_alpha^2*d^2-(-c*d^2 
)^(1/3)*_alpha*d-(-c*d^2)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-c*d^ 
2)^(1/3)-1/2*I*3^(1/2)/d*(-c*d^2)^(1/3))*3^(1/2)*d/(-c*d^2)^(1/3))^(1/2),1 
/2*b/d*(2*I*(-c*d^2)^(1/3)*3^(1/2)*_alpha^2*d-I*(-c*d^2)^(2/3)*3^(1/2)*_al 
pha+I*3^(1/2)*c*d-3*(-c*d^2)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(- 
c*d^2)^(1/3)/(-3/2/d*(-c*d^2)^(1/3)+1/2*I*3^(1/2)/d*(-c*d^2)^(1/3)))^(1/2) 
),_alpha=RootOf(_Z^3*b+a))
 
3.5.77.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\text {Timed out} \]

input
integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="fricas")
 
output
Timed out
 
3.5.77.6 Sympy [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {\left (c + d x^{3}\right )^{\frac {3}{2}}}{\left (a + b x^{3}\right )^{2}}\, dx \]

input
integrate((d*x**3+c)**(3/2)/(b*x**3+a)**2,x)
 
output
Integral((c + d*x**3)**(3/2)/(a + b*x**3)**2, x)
 
3.5.77.7 Maxima [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \]

input
integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="maxima")
 
output
integrate((d*x^3 + c)^(3/2)/(b*x^3 + a)^2, x)
 
3.5.77.8 Giac [F]

\[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int { \frac {{\left (d x^{3} + c\right )}^{\frac {3}{2}}}{{\left (b x^{3} + a\right )}^{2}} \,d x } \]

input
integrate((d*x^3+c)^(3/2)/(b*x^3+a)^2,x, algorithm="giac")
 
output
integrate((d*x^3 + c)^(3/2)/(b*x^3 + a)^2, x)
 
3.5.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x^3\right )^{3/2}}{\left (a+b x^3\right )^2} \, dx=\int \frac {{\left (d\,x^3+c\right )}^{3/2}}{{\left (b\,x^3+a\right )}^2} \,d x \]

input
int((c + d*x^3)^(3/2)/(a + b*x^3)^2,x)
 
output
int((c + d*x^3)^(3/2)/(a + b*x^3)^2, x)